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S U M M A R Y  
A method for finite difference computation of incompressible viscous swirling flow through annular diffusers is pre- 
sented. Calculations (based on the steady-state Navier-Stokes equations including non-linear terms) are made to 
determine the distributions of stream-function, vorticity and swirl velocity. A description is given of a new method for 
determining the dynamic head and static pressure distributions. In addition evaluation of the various performance 
parameters is considered. Computational difficulties and the capabilities of the computer program developed to solve 
the problem are also discussed. 

1. Introduction 

In many rotodynamic machines such as turbines, pumps and compressors, flow in diffusers 
has considerable practical importance. By gradual expansion of the passage through which the 
fluid is flowing, a reduction in the velocity level together with an increase in static pressure can 
be achieved. In this way, kinetic energy is converted to pressure energy. As a result of the de- 
creased velocity level, it is possible to reduce energy losses. However, the resulting flow is 
against an adverse pressure gradient and with this condition, the main flow is liable to separate 
from the boundary. Separation increases energy losses and leads to very non-uniform velocity 
profiles at exit and so the problem of designing diffusers that allow maximum static pressure 
rise without causing separation is very important. Decreasing energy losses and obtaining a 
good pressure recovery is by no means the only application of diffusers, but is one to which 
much research interest has been devoted. 

Diffusers are encountered in a variety of shapes and sizes depending on the diffuser installation 
in question. Most experimentalists have concerned themselves with the simpler geometries 
such as straight walled two-dimensional, radial, conical or annular diffusers. In practical situa- 
tions, of course, the actual diffuser shape is usually dictated to within certain limits by space and 
cost limitations. 

A great deal of the research work on diffusers has been concerned with performance charac- 
teristics and design problems. Experimental diffuser studies are numerous in the literature. 
Performance charts have been plotted and comparisons made between the performance charac- 
teristics of two-dimensional, conical and annular diffusers [1 ], [-2]. The effect of the inlet boun- 
dary layer and its importance in conical diffusers has been demonstrated [3]. More recently, 
interesting results with swirling inlet flow have been obtained [4], [5]. Theoretical attempts to 
predict diffuser flow and performance have, in the main, used boundary layer methods involving 
step by step solution of the boundary layer growth in an adverse pressure gradient. Studies of 
this type, for rotationally symmetric flow passages including conical diffusers, [6]-[8],  have 
produced results whose agreement with experiment is most encouraging. An interesting analyti- 
cal approach [9] for the case of certain annular diffusers uses a linearised vorticity method but 
assumes constant inlet and exit static pressure distributions. 
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One of the interests that motivated the present work was the nature of separation and the 
corresponding recirculating flow regions. Although by consideration of the shape factor [10] 
it is possible using boundary layer methods to predict separation, a study of the full recirculating 
regions is really beyond the scope of boundary layer methods. It therefore became necessary to 
solve the full Navier-Stokes equations including all the non-linear terms. To solve these equa- 
tions in full generality is far beyond the scope of present day computers and so some compro- 
mise was necessary. The steady-state swirling axisymmetric case was chosen. Time dependent 
studies are feasible (by, for example, extending a method in [11]) but to deal with turbulence 
adequately was beyond the capabilities of the available computer. However, the case under 
consideration is important and as yet unexplored territory. 

The diffuser geometry considered here is an annular diffuser having a conical outer casing 
and a cylindrical hub. This configuration is very similar to that used in the experimental 
study [5]. One of the main interests was the possible effect that a swirl velocity component in the 
fluid could have on the flow regime. Originally it was felt that swirl could critically affect separa- 
tion. This surmise has indeed subsequently been proved correct by experiment [4], [5]. The 
hub of the diffuser was made capable of rotation so that swirl could be induced as well as intro- 
duced at inlet. To the authors' knowledge there have been no extensive theoretical studies of 
swirling diffuser flows. 

The numerical procedure that has made the current computations possible employs "Up- 
wind Differences", as introduced in [12] to approximate convection terms. The use of "Upwind 
Differences" theoretically detracts from the accuracy, but it does ensure that the matrices of 
coefficients of the sets of finite difference equations are unconditionally diagonally dominant 
thus promoting numerical stability especially at higher Reynolds numbers. Furthermore, 
"Upwind Differences" yield feasiblesolutions for some problems where central differences give 
physically unrealistic results. 

2. Formulation of  a problem 

The investigations reported here have been restricted to annular diffusers consisting of a conical 
outer wall with a centrally placed cylindrical hub (see fig. 1) but the computer program developed 
for the problem is readily adapted for a much wider range of configurations. The equations 
governing the motion are, in dimensionless form 

t 
(V'V)V= - V P  +~,  V zV (2.1) 

div v =  0 (2.2) 
The Reynolds number, R, is based on the inlet annulus width and the inflow velocity. 

/ 

outer casing 

axis of symmetry 

Figure 1. The diffuser geometry. 
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2.1. The co-ordinate system 

The amount of computation involved in the implementation of the boundary conditions is 
dependent on the suitability of the co-ordinate system used. The spherical polar co-ordinate 
system is ideal for conical diffusers without a hub. However, this system is not so well suited to 
the present problem since the hub boundary would not lie along a co-ordinate line. The co- 
ordinate system derived for use here is a generalisation of the spherical polar co-ordinate system 
that allows all boundaries to coincide with co-ordinate lines. The details of the system are 
pictured in fig. 2. This system is ideally suited to a wide range of straight walled annular geo- 
metries. 

' :  ii7 / f / J -  

y x 

hub ~ outer 

o u , . , . . .  LL )) -' 
at inlet / ~ "~----J / 

(b) 

Figure 2. The co-ordinate system. 

2.2. Boundary conditions 

The inlet flow is known and on the walls, the "no slip" assumption gives the appropriate condi- 
tions. The major difficulty is the exit boundary. The authors are not aware of any completely 
satisfactory treatment of such a boundary. One difficulty is that the conditions clearly depend 
on whether the flow is fed into an infinite still medium, into a cylindrical tail pipe, or into any 
other fluid handling system. It is, however, not unreasonable to assume that the downstream 
conditions do not have too great an effect on the upstream behaviour. It was therefore decided 
to use the simplest reasonable boundary conditions necessary to ensure that a solution of the 
equations is possible. These conditions insist that the flow be radially directed (for r of fig. 2) 
at the exit: the nearest physical analogue is that of "free slip" guide vanes placed at the exit. The 
conditions are by no means perfect since they restrict the type of recirculating flow regions that 
can occur. Their effectiveness, however, can be analysed a posteriori when the solution has been 
computed. Then, for instance, by doubling the length of the diffuser and comparing the solutions, 
it can be decided how far- from the exit the computed results are reliable. 

2.3. Introduction of vorticity and stream function 

The vorticity-stream function formulation of the Navier-Stokes equations has been used. 
The stream function, 7 j, is introduced satisfying 

1 0 7  / 1 0 7  / 
I1,- rR 00 '  V0 R Or (2.3) 
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thus ensuring that the continuity equation (2.2) is identically satisfied. The vorticity, 4, is 
defined as 

= (curl V)" q~ (2.4) 

i.e. the q~ component of the vorticity which in the absence of swM is the only component. 
By eliminating pressure in the usual way, the three component equations of (2.1) and equation 

(Z2) can be re-formulated as three equations in unknowns vorticity, stream function and swirl 
velocity. The equations may be derived and manipulated into the form 

~ -  cos 0 Or / 

~r ~R ~rr} + ~ \ ~ J  = - r ~  (2.6) 

(2.7) 

Equations (Z5), (2,6) and (2.7) are referred to as "the vorticity equation", "the stream function 
equations" and "the swirl velocity equation" respectively. 

In the rest of the work, it is convenient to use variables (2, ~P and A where 

g2 = i/R , A = RV~ (2.8) 

and 7/is as defined earlier. With this choice of variables, all three equations assume the form 

~---Or ( brR o-~r (c~,) + ~ ( bRr ~--0 (ccb,) - a  [~--; (~ ~0) - ~--O (~ @r~)l = rRd (2.9) 

where ~, a, b, c and d are given for the individual equations in table 1. 

T A B L E  1 

~' a b c d 

(2 R R  2 R 2 1 R R _ 2  si 0 ~A z cos 0 
~0 ~r J 

gt 0 R 2 1 -C2 

A R R 2 R - z  0 

3. Method of solution 

3.1. The mesh 

A mesh with non-constant spacings has been employed. This allows the use of fine mesh spacings 
in areas where spatial gradients are large (e.g. boundary layers) and relatively coarse mesh 
spacings where these gradients are small. More effective use of computer time and core-store 
can then be made than would be possible with a uniform mesh. However, the complexity 
of the finite difference equations is very much increased and care must be exercised in the con- 
struction of the mesh. The ratio of successive mesh spacings should be made as close to unity 
as possible (especially near walls) and chosen so that the order of magnitude of the truncation 
error is not impaired [11]. For the mesh systems used by the authors, this ratio varies from 1 
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at the boundaries to about 1.3 in the middle of the flow passage. The largest mesh spacing is 
then typically six times as large as the smallest. 

3.2. Finite difference equations 

For the numerical solutions of equations (2.5), (2!6) and (2.7), the method of successive under/ 
over relaxation has been used. No general theory at present exists for satisfactory prediction of 
the optimum relaxation parameters for non-linear coupled sets of equations. Methods that 
have proved successful with certain classes of linear equations (e.g. [13]) applied to the present 
equations lead to relaxation parameters that cause divergence. The authors' choice of relaxation 
parameters c01, o2 and o3 for vorticity, stream function and swirl velocity equations respectively 
is based on experience and experimental computation. For the majority of calculations, values 
of col, co 2 and e) 3 were such that 0.2 < o h =< 0.8, 0.6 < co 2 < 1.5 and 1.0 __< o 3 _-< 1.5. 

The most common way of deriving finite difference equations is by using Taylor Series 
approximations. Preliminary investigations disclosed that whereas this method is successful for 
a uniform mesh system, it can lead to severe instabilities with a non-uniform mesh system. 
It seems likely that the cause of these instabilities Could be removed with the use of an appro- 
priate conservative difference scheme. Experimentation with difference equations derived by 
integration over an elementary area, however, did not reveal any difficulties even with a non- 
uniform mesh system. An integration method, essentially the same as that used in [-12] was 
therefore adopted. The finite difference representation of (2.9) at point P (see fig. 3) for iteration 
on k is 

g "  t i s (k+  1) ._[_ " J N  "~'N -[- - -  - -  (25(k + 1) = ~(k) _[_ gO [(CE ~(Ek) H_ _,W ~.. w t-' d)(k) Cs ~(k+ 1 ) D ) / C p  ~(k)] (3.1) 

where 

CE = AE + BE CE 

Cw = Aw + Bw Cw 
C N --~ A N -f- B N CN 

Cs = As + Bs Cs 

Cp = A E + a w + AN + As + (BE + Bw + BN + Bs)ce (3.2) 
o = relaxation parameter corresponding to ~b 

AE = aP(~gSE + ~ S - -  ~NE--  ~'tNq- I~gSE q- t//S-- (I-/NE - ~NI)/2 
Aw= ap(~NW + (/IN-- ~SW-- ~S+ I ~NW+ WN-- ~PSW-- ~sl) /2  
A N = a p  ( ~ - I N E - [ -  ~r/E - -  ~ N W -  ~T/W +[~NE-I- (PE- ~gNW- ~N [)/2 

As = ap(~sw+ (Pw-- ~Vsg-- ~s-k [ ~SW-F ~w--  ~SE-- ~g[)/2 

(3.3) 
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SW 
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Figure 3. Typical mesh point, P, showing region of integration. 
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BE = (bE + be)(RE + Rp)(rE + rp) (0N-- Os)/(16(rE-- rp)) 

Bw = (bw + be)(Rw 4- Re)(rw + rp)(0N-- 0s)/(16 (re -- rw)) 
BN = (bN + bp)(r E - rw)(RN + Ro)/(Sre(0N-- 0e)) (3.4) 

B s = (b s + bp)(rz - rw)(Rs + Re)/(Srp(Op- 0s)) 

D = rRd 

a, b, c and d are as given in table 1. 

One sided difference approximations or "upwind differences" have been used in approximating 
the convection terms and this results in the convection term coefficients AE, Aw, A N and A s all 
being positive. Since the B's are also positive, it can be seen that the systems of equations formed 
for the vorticity and stream function, where the c's are constants, must be diagonally dominant. 
While it cannot be assured that the system of equations for the swirl is necessarily diagonally 
dominant, no convergence difficulties have ever been experienced with this system. 

Equation (3.1) is applied at each interior point by scanning along lines of constant r systemati- 
cally in the direction S to N. It is also possible, of course, to scan along lines of constant 0: in 
fact, all consistent orderings are equivalent [14]. In accordance with the usual S.O.R. theory 
[15], at this stage oP~ k) is known everywhere and ~(k+ 1) values are used as soon as they are 
available. 

3.3 Stream function boundary conditions 

Inlet values are calculated from the given inlet radial velocity profile by numerical integration 
(the Trapezium rule is sufficiently accurate). Since the walls are impermeable, the stream func- 
tion is a constant on each wall. At the hub boundary the constant is taken to be zero and at the 
outer wall the value again depends on the inlet flow and gives a measure of the momentum 
flux. Since the flow is assumed to be radially directed at the exit, the appropriate condition there 
is 

Or 0.  (3.5) 

3.4. Swirl velocity boundary conditions 

At the inlet, the swirl velocity profile is assumed to be known. The no-slip condition requires the 
swirl velocity at the solid walls to be zero unless they are rotating in which case the swirl velocity 
will be equal to the speed of the wall surface. For swirl induced by rotation of a wall, the appro- 
priate boundary condition is 

3V~ - 0 (3.6) 
0r 

However, for swirl introduced solely at inlet, equation (3.6) would result in increased angular 
momentum which is physically impossible. In reality, of course, for this situation the swirl is 
decaying and the most suitable condition at exit is one that allows the decay rate to be main- 
tained. Such a condition requires 

~2v~ 
Or 2 - 0.  (3.7) 

3.5. Vorticity boundary conditions 

The inlet vorticity values are again calculated from the given inlet flow. At the exit the values 
are determined from the stream function equation simplified by the stream function condition 
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(3.5). The wall vorticity boundary conditions are the most difficult to deal with. It is believed 
that the way in which the wall vorticity values are determined is a key factor affecting the accu- 
racy and convergence of the method. Several different formulations have been found for the 
vorticity on the solid walls of which three have second order truncation errors. Test computer 
runs with identical data for each of these formulations gave results which were in very close 
agreement. First order approximations, on the order hand, were found to be hopelessly inade- 
quate. In each case a weighting technique was used to achieve greater stability. The derivation 
of these various wall vorticity formulae is given in [11]. Here the implementation of one of the 
second order formulations is illustrated. 

_ W)) s i) - 2~ A3 [~(k) ~ JtNNP-- 
2 2 3 2 3 2 + (1-=)~2~ k) (3.8) 

rp Rp 0 2 01 -- 01 0 2 

where a is a weighting factor satisfying 0 < ~ __< 1. Figs. 4a and 4b show the relative positions 
of points P, NP  and N N P  for the cases of the hub boundary and wall boundary respectively. 

e = o  

O-- O-O, 

O= O-O, 

NP 

INP 

(a 

Figure 4. Boundary mesh molecules. 

3.6. Iterative procedure 

o=e, 

O--O, 

O=O 

NNP 

NP 

P 

(b) 

Let B denote all boundary mesh nodes and I all interior nodes. The variables to iterate are f2, 
7 z and A and after the k th  iteration the values obtained are denoted by O (k), 7 j(k) and A (k). 
The values at inlet of these main variables are calculated from the given velocity profiles in the 
straightforward way already indicated. In order to obtain an initial guess, f2 (~ 7 ~(~ and A (~ 
the inlet values of these variables are given to all mesh points lying on the same mesh line of 
constant 0. (Once a solution has been obtained, it can be used as an initial guess for the next 
case where the Reynolds number is increased.) 

The iteration strategy used to find values for ~--~(k+ 1)~[J(k+ 1) and ..4 (k+ 1) from the stage where 
Q(k), 7~(k) and A (~) are all known, is as follows: 

(i) Obtain f2 (k+ 1) on I using one S.O.R. cycle and then f2 (k+ 1) on B using the appropriate 
boundary conditions. 

(ii) Obtain 7 ~(k+ 1) on I using one S.O.R. cycle. On B, ~(k+ 1)= hu(k) except at the exit where 
new values are found subject to condition (3.5). 

(iii) Obtain A (k+ 1) on I using one S.O.R. cycle and calculate A (k+ t) at the exit. For  the re- 
mainder of B, A (k + 1) = A(k). 

(iv) Test to see if 

Max [- Max I ~(k)-- ~ `k+t) ] 
q~=~,~,A [ B+I ~ • . 

(v) If the convergence criterion (iv) is satisfied the values of O (k+ ~), kv (~+ 1) and A (k+l) are 
taken as the solution, otherwise the iteration process continues. 

It is possible to devise any number of iterative strategies but what the optimum strategy is 
seems to be an open question. After a limited amount  of experimentation, the method outlined 
above was adopted where only one iteration of each variable is performed before progressing 
to the next. 
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4. Diffuser performance calculations 

The usual parameter for rating diffusers is the pressure recovery coefficient, defined as the static 
pressure rise through the diffuser normalised on the inlet dynamic head. The pressure distribu- 
tion in the diffuser must therefore be found. Equations for the pressure derivatives OP/~r and 
aP/O0 can be found in terms of the calculated flow variables from the ~ and 0-component 
equations of (2,1) respectively. For the present co-ordinate system these equations are rather 
involved but consideration of the total head, H = P + �89 V 2 leads to a formulation that can be 
handled more conveniently 

where 

~H ~ 0 + 1 ~A z 1 O (RZO) 
Or ~r 2R 2 ~r rRR 00 

(4.1) 
~H ~7 ~ 1 c3A2 r 0 
~30- -- c30 f2 + 2R ~ ~ -  + R-~ ~r (R20) 

A = R Ve and f2 = ~/R. 

Since the distributions for ~, kg and A are known, (4.1) are sufficient to calculate pressure dif- 
ferences uniqely. 

It was found that in order to attain second order accuracy for the pressure distribution, an 
iterative method of solution was necessary. Furthermore, difficulties arise as a result of having 
used upwind differences in the solution for the main variables. However, consistency in the 
sense that pressure integrals round closed contours should be zero, could be attained by using 
upwind differences for the pressure calculation. Details of the calculation method are given in 
[11]. The convergence criterion for the pressure iteration was chosen so that further reduction 
of the residuals would not affect the efficiency of the diffuser. It should be noted that the effi- 
ciency is a very sensitive parameter. 

The pressure recovery coefficient, Cp, is obtained by comparing the actual static pressure 
rise through the diffuser in question with the static pressure rise theoretically obtainable for 
complete diffusion and ideal flow, (i.e. the static pressure rise normalised on the inlet kinetic 
energy). 

The ideal pressure recovery coefficient, Cp,, is the Cp value that would result were the flow 
ideal. 

The diffuser efficiency, E, compares the static pressure rise obtained with the theoretical 
static pressure rise for the given diffuser were the flow ideal. 

In calculating diffuser performance parameters for non-swirling flows it is often assumed 
that the static pressure and velocity are constant across inlet and exit. For boundary layer 
methods the pressure rise is then determined by applying Bernoulli's equation to the potential 
core together with a conservation of mass equation (e.g. [7] and [16]). However, substantial 
non-uniformities are produced when separation occurs or for swirling flows where there is a 
pressure gradient normal to the main flow direction. The difficulty now arises of what averaging 
procedure to use in order to calculate performance parameters. Two methods that have been 
used (usually in experimental work) are: 

(i) mass flow averaging with corresponding parameter CeM e.g. [5] and [17], 
(ii) area averaging giving rise to parameter CpA e.g. [2J, [4] and [18]. 
In non-dimensional terms for the present situation 

CeM = (fa2 PzV~2dAe-fa1,1VqdA1)/flV~V~2dA1// , A, (4.2) 

and 

C'A = (~22 fA2 P2dA2- fA.IPldA1)/fA~ XV2dAa (4.3) 
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where A 1 and A 2 a r e  respectively the areas of inlet and exit annular surfaces and the suffix 1 
refers to inlet values while suffix 2 indicates exit values. The surfaces A 1 and A 2 a r e  surfaces of 
constant r. (For small 0 these surfaces do not deviate much from the corresponding plane 
surfaces normal to the axis of symmetry.) It is felt that when pressures and velocities are sig- 
nificantly non-uniform across inlet and exit, the mass flow averaging formula (4.2) based on the 
concept of flow energy is the most appropriate. 

For  ideal flow with no "total pressure" losses 

fAPI~IdA1 + fa �89  fA2P29r2dAz + fA2�89 (4.4) 

where V, V 1, V 2 etc. indicate velocities for ideal flow. Using (4.4) to eliminate P2 in (4.2) leads 
to an expression for the ideal pressure recovery CeM, 

/fA } 
Correspondingly, for area averaged ideal flow 

AI A1 
fA1 el dAl+ IA1 �89 dAl= A22 fA 2 P2 riM2+ A22 fA 2 �89 dA2 (4.6) 

which in conjunction with (4.3) gives 

CpAi=I-- (~12 fA2�89 / ( fA1 �89 " (4.7, 

Taking 17- (~, 0, 0) and replacing ~ by its average over the relevant surface, both Ce~t, and 
Cpa , reduce to the usual ideal pressure recovery formula [16], [19] 

Ce, = 1 -- (AR) -2 (4.8) 

where A R = a r e a  ratio=Az/A 1. Equation (4.8) takes no account of nonuniformities in the 
velocity profiles and the corresponding additional energy. It is possible in certain circumstances 
for its use to result in theoretical efficiencies in excess of 100 ~ (e.g. a highly non-uniform inlet 
flow under favourable circumstances resulting in uniform exit flow). 

As mentioned earlier, A 1 and A 2 are taken as annular surfaces of constant r. It is convenient 
to denote by O and Oh (usually zero) the 0-values of the outer casing and hub respectively so that 

SA f ~ A 1 = dA 1 = 2rcRlrldO 
I Oh 

f A 2 = dA 2 = 27zR2rzdO 
2 Oh 

where 

R i = a + ri sin 0 (i = 1, 2). 

Equation (4.2) can then be re-written as 

? f~ P2 V,~R2r2dO - P1 V~, RxrldO 
Oh Oh 

CpM ~ -0 
�89 

(4.9) 

(4.10) 

Similarly, CpA , CpM and CpA, can be formulated in terms of integrals involving the 0 co- 
ordinates. 

T h e  parameters CeM and CeA are expressed in terms of integrals of quantities that are known 
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at all mesh points. The mesh is sufficiently refined for the integrations to be carried out accu- 
rately using the trapezium rule. 

The diffuser efficiencies E u and E a are calculated from 

EM = CpM/CeM,, EA = CvA/Cea,. (4.11) 

It remains now to find suitable expressions for V 2 in (4.5) and (4.6) so that the ideal pressure 
recoveries can be calculated. These ideal pressure recovery coefficients should represent a valid 
upper limit on the actual pressure recovery coefficient. The velocity at inlet [71 = (ffr~, 0, 9~) 
is known. For radially directed axially symmetric flow, the continuity equation (2.2) gives 

rRV~ = const. O h < 0 < 0 
rl(a+rl sinO)V~=r2(a+r 2 sin 0)V~2 Oh<O<_O. (4.12) 

This enables an exit radial velocity profile to be found that satisfies mass conservation. In 
order to find the swirl distribution at exit, use is made of Kelvin's circulation theorem; viz. 'for 
ideal flow the circulation round any closed curve C moving with the fluid is a constant', i.e. 

Circulation = f V, " dsl = [ V2 " dsz 
�9 )circuit  at inlet ,]corresponding circuit  at exit 

Taking in each case the circuit for a constant O-value gives 

f 2~0 V~ J "2~V4,2R2d~)o 

whence from axml symmetry 

R~ Vo,. (4.13) 

Once the exit distribution of swirl and radial velocity has been found CeM, and Cpa, are calcu- 
lated by numerical integration. 

5. Summary and comments 

The great advantage of the co-ordinate system used is that physical boundaries correspond to 
surfaces of constant 0 or constant r, thus simplifying the numerical analysis. However, for a 
realistic number of mesh points, core store problems arise. The diffusion coefficients (equation 
3.4) are constant throughout the iteration procedure and should therefore be calculated and 
stored. Thus for each variable at each interior mesh point it is necessary to store BN, Bs, BE and 
B w. For a grid system of 1,000 mesh points, for example, 24k words of core store would be 
required for these coefficients alone. In spherical polar co-ordinates the problem can be 
overcome at the expense of a single multiplication each time a coefficient is used since 

Bx(O, r)=f~(r)g~(O), (x=N,  S, E, or W) (5.1) 

and so, for example 

BE [i, .j] =fE [i] g~ [J], (1 _ i -< N1, 1 < N2). 

Each coefficient then requires only N I + N 2  numbers to be stored rather than N1 • 
For the co-ordinate system used here, a decomposition of the form (5.1) is not possible because 
of the presence of the a in R =  a + r sin 0. Three alternatives for the coefficients B are possible: 

(i) Store all the coefficients at each mesh point. 
(ii) Work out the coefficients afresh each time they are needed. 
(iii) Store the coefficients on disc and bring them into the fast access core only when needed. 

Alternative (i) leads to a larger core-store requirement than was available while (ii) is time con- 
suming and inefficient and so alternative (iii) was adopted even though it calls for disc transfers 
at each iteration of each variable. 
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Difficulties in obtaining convergence for this type of problem for moderate and high Reynolds 
number, have led to the widespread use of the one sided difference approximations for convec- 
tive terms known appropriately as "Upwind Differences". This type of approximation ensures 
a diagonally dominant iteration matrix and hence better convergence characteristics. Even so, 
under-relaxation, as used in [203 in the absence of "Upwind Differences", is still necessary for 
convergence in most cases. The theory of second order linear partial differential equations, which 
has reached a high stage of sophistication regarding prediction of optimum overrelaxation 
parameters, is virtually useless here and in general, experience is the only guide. The equation 
that presents most difficulty is the vorticity equation for which the relaxation parameter was 
sometimes reduced to 0.2. The stream function equation is also under-relaxed in many cases, 
but the swirl velocity equation presents few problems and could always be over-relaxed. There 
appears to be a coupling effect between the relaxation parameter for the vorticity and the stream 
function. It was found that increasing the stream function relaxation parameter requires the 
vorticity relaxation parameter to be decreased if convergence is to be achieved. 

Solutions for low Reynolds number cases are not usually difficult to obtain. However, unless 
the initial guess for high Reynolds number cases is sufficiently close to the true solution, ob- 
taining convergence can be most difficult. For this reason, once a solution has been obtained, 
it is used as the initial guess for the next higher Reynolds number case. As will be mentioned 
in Part II, there is sometimes a critical combination of swirl and Reynolds number where the 
flow regime changes. For cases close to this situation, convergence can be very slow indeed. 

The computer program is sufficiently versatile (subject to convergence considerations) to deal 
with arbitrary inlet radial velocity profile and any combination of inlet swirl, hub swirl and outer 
wall swirl. Any straight walled axially symmetric annular geometry where the hub wall and 
outer wall would intersect if produced backwards can be considered. Also within the scope of 
the program is the special case where the hub shrinks to zero leaving a conical diffuser. 

The method that has been discussed is capable of predicting laminar flow through straight- 
walled annular diffusers. Extensions of this work must incorporate a suitable turbulence model. 
In this connection the work on turbulence of Spalding et aI. at Imperial College and Harlow 
et al. at Los Alamos looks most encouraging. 
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